
INTERNATIONAL JOUKN4L FOR NUMERICAL METHODS IN FLUIDS, VOL. 16, 303-327 (1993)

COMPUTATION OF FLUID FLOW WITH A PARALLEL
MULTIGRID SOLVER

SUMMARY

A finite volutnc numerical method for the prediction of fluid flow and heat transfer in simple geonietries was
paralleli~ed using a domain decomposition approach. The method is implicit, uses a colocated arrangement
of variables and is based on the SIMPLE algorithm for pressure velocity coupling. Discretization is based
on second-order central difference approximations. The algebraic equation systems are solved by the ILL7
method of Stone.' To accclcrate thc convergence, a multigrid technique was used. The efficiency was
examincd on three different parallel computers for laminar flow in a pipe with an orifice and natural
convection in a closed cavity. It is shown that the total eficiency is made up of three major factors: numerical
#ciency, parallel eficiencv and load-halunciny cfficienty. The first two factors were thoroughly investigated,
and a model for prcdicting the parallel efficiency on various computers is presented. Test calculations
indicate reasonable total efficiency and favourable dependence on grid size and the number of processors.

KFY \VOKL)S Parallel computing Finite volume method Implicit method Multigrid mcthod
Domain decomposition

1. INTRODUCTION

Computational fluid dynamics consumes a large part of available computer resources. The need
for numerical solutions of fluid tlowq and the accuracy demands are growing as optiinimtion
requirements become more stringent. Many solution methods based on finite difference, finite
volume or finite element approaches have been developed. A number of commercial codes are
available. The desire to solve larger problems more accurately increases thc demand for efEcicncy.

Using vector supercomputers IS nearly standard today However, most algorithms cannot be
vectoriLed fully. Also, the efficiency of vector processing often depends strongly on the vector
length. The transport of data from memory to the vector pipes is a bottleneck which limits the
computation speed. The performance of vector processors cannot be increased indefinitely since
the chip miniaturization is approaching its limits.

As an alternative, parallel computers offer the promise of scaleable arithmetic performance.
They can employ microprocessors which are relatively inexpensive but, nevertheless, of high
performance.

Parallel computers can either be of shared memory or distributed memory architecture. Codes
for shared memory are simpler to write, but memory access conflicts and the memory to CPU
bottleneck prevent this architecture from being truly scaleable. For distributed-memory architec-
tures, no such problems arise. Since each processor has its local memory, there is the possibility of
parallel memory access without conflict. Howcvcr. there is dificulty in writing programs for such

0271-2091/93~040303 25S17.50
(- 1993 by John Wiley tk Sons, Ltd.

Rtwir;ed April lY92
Revised October I992

computers. Without communication libraries (which are now available for some parallel com-
puters), a programmer himself has to do the ioad balancing and thc communication between
processors. This has to be done for each program, which i s one reason for slow acceptance of such
computers.

In coinputritional fluid dynamics, coupled non-linear systems of partial differential equations
have t o be solved. Dilt'ercntial operators are of local charactcr, so the solution domain can easily
be subdivided into subdomains, and each subdomain can be assigned 10 a singlc processor.
Communication between the processors is needed only to exchange the data at the subdomain
boundaries. Therefore, one w~ou lc l expect high cfticicncy if thc partitions arc properly chosen. For
explicit solution methods, parallclization is relatively simplc: however, for implicit
methods which are important for steady Ilo nd flows with slow transients parallelization is
less trivial. The partitioning generally decreases thc convergciicc rate. I n order to achieve
cliiciency, it is nec

'To exiiniiric these effects, a paruliel algorithm based on domain decomposition hac been
developed and applied t o several problems on ditt'ercnt parallel computers. The main f'actors
infliienciIig the performance were identified and their efkcts were studied b! measuring compur-
ing times as a function of grid size and number of processors used. In particular. the numcrical
eilicicncy o r convergence rate and the parallcl efficiency, which depends on communication
overhead, were studied. For the latter. a simple model equation was derived which reproduces the
measured values fairly well.

ry to optimize thc coupling ot' the subdomains.

2 HASIC ALGC)RITIIM

The fluid dynamical problemi considered in this \ tudj <ire s t e d y , tM.u-dimensiona1. laminar flows
in rectangular domains. The conservalion cqiiationr poveriiirig the trm\port of ma\\, momentum
and hcat r e d .

Ill\ (pV) 0, (1)

(2)

13 I

Here p is the deiirity, CI', (or li. L 1 .ire the component\ of the velocity lector V in the Cdrteudn co-
ordinate directions x , , P is thc piessuie, 7 IS thc temperature, Pu is the Prmdtl number. p IS the
djnamic viwositp. y, is the component of the grnvitational acceler'jtion vcctor and i, is the uni t
vector i n the Y,-direction. I'luid propcrticr are a\<urncd constant. except in the buoyancy term
(Bousrincsq approxima Lion)

The solution domain is drscretizcd into rcctanguix ccll~ FI he transport equations arc applied
to the finite control volumes (C'Vi). lciding to b,ilmce equations inbolving the fluxes through the
C V facci, E R here I -e. w, n, s (\ee € igure I) and thc valurnctric rourcci. Q. for each CV

I . , t t , ,+I. , t F , = Q (4)

The m'iss Iluxcs 1 hrouph ('V facck \ . , it icfj the continuity equation <ind are uwri t o compute the
convectne fluxer in the othcr transport equation, in the next iterdtion 'Thi\ IS rhc simplcst wi! of
iincar171ng thc con\ective tcrms. F o r cxdnip~c. conkcctivc l l u x of + where (jh ,tand\ f o r I ' . L'or i;
thiough CV Lice e rnaj be expr

A PARALLEL MIJLTIGRII) SOLVIqK 305

I I

Figure I 4 iypical control Lolurnc and labelling x h c m c

Here l j 7 , is the niaw flux through the CV face and 4, is assumed to represent the mean value of
q5 over the C'V face; it is expressed in terms of nodal values using second-order ccntral clifference
approximalions. The diffusive contribubon to the flux 1. IS

which ulso represents a central ditference approximation. The source terms are approximated
by assuming that the volumetric source at CV centre. P, represents the mean value over the
whole uv.

For each CV the above approach leads to a n algebraic equation of the forin

where index nb runs over the neare\t neighbour CV centres E, W, N and S. For the whole solution
domain, a matrix equation

(8)

result,. [A] is the square coefficient matrix which, for the above discrctiration scheme and
structured grids, hac non-rcro cicmcnts on five diagonals only. 14) and { Qj arc column matrices
whose elements are nodal values of the unknown 4 and the source term of equation (7). arranged
sequcnridly along grid line\

The linearized equations are relaxed iterdtively using an iteration matrix [A l l ac follows:

If41 Id; = i Q)

[I v f] {@n)= IQ) -LA .Mj ; (b m I ; , (9)

where i i i 15 the iteration counter These iterations are called iiiizvr Iterations. In the present study
the incomplete lower upper decomposition (11 [I) solver of Stone' is used It i s similar to the
crandard 1 1 IJ method in that the malrix [,\4] i c a product of ;I lower LI,] and an upper [Uj
ti~angular matrix, which have the same 5parcity as the matrix [A] However, Stone's method uges
the smoothness property of the solutiun~ of partinl difTerential equcttidn$ to ~ntroduce approxima-
tioil\ which niinimize the product [A - M 1 !(/I:. thu5 leading t o ;I much taster convcrgcncc than
thc st.tnttmi I 1 U method The solver emplovs '1 reLixdtion pxarrieter x . whosc value i s cho>en in

306 r SCHRLCK AND M PERIC

the range O < x < 1 . Optimum value is problem-dependent, but uwaily good results are obtained
with x = 0.92, which is the value used in the present computations. For 5 = 0, the method reduces
to the standard I L U solver.

The coupled set of non-linear equations for U, V, Tand P is solved sequentially using SIMPLE
algorithm' for pressure velocity coupling. The discretized momentum equations are assembled
using the latest avaiiable values for the other variables (pressure and mass fluxes) and solved with
the ILU solver. For a single domain, one inner iteration is suficient. The mass [luxes calculated
from velocity components so obtained do not satisfy the continuity equation. Mass conservation
is enforced by correcting the velocities by adding a pressure gradient correction; thc correction is

where A ; is the central coefficient of the U-equation. Inserting these velocity corrections into
descretized continuity equation leads to a pressure-correction equation of Poisson type. The
source term in the pressure-correction equation is the imbalance in the uncorrected mass fluxes.
This equation is a150 solved with the ILU solver; typically, SIX to ten inner iterations are required.
The mass fluxes, velocities, and pressure are then corrected using the pressure correction. For
natural convection the energy equation is also solved. It is coupled to the momentum equations

c Initialize

U - equation

Assemble and solve
V - equation Solverl

I LC: Exchange A, of
U and V eauation

Assemble and solve

GC; Broadcast P' a t
. reference location - LC: Exchange U

and V values

GC: Collect absolute

GC: Broadcast con-
vergence decission

residual sums
*

Figure 2 I-IOVV chart of thc outer iterdtion loop(a) and the inner iterdtion loop (b), d l w \bowing locdl (I C) and global
(GCJ cornmuniLdlion in the FI mode

A PAKALLfiL MULTIGKID SOLVER

GC: Broadcast con-
vergence decission

307

I

Assemble L and U

Calculate
residual vector I I 1

Calculate

P)

m Correct variable

, LC: Exchange
variable values

I G C : Collect absolute
residual sums

Figure 2. (Continued)

through the buoyancy term in the latter and the velocities in the former. This completes one ourer
iteration of the SIMPLE procedure. The coefficients of the difference equations are then updated
and the procedure repeated until convergence is achieved. The convergence criterion requires that
thc sum of absolute residuals in each equation be reduced by a prescribed amount (usually four
orders of magnitude). A flow chart of the outer and inner iteration procedure is presented in
Figure 2. More details of the method can be found in References 3 and 4.

This procedure efficiently removes only those components of the error whose wavelengths are
comparable to the grid spacing. For this reason, the number of outer iterations increases linearly
with the number of grid points. resulting in a quadratic increase in computing time. 1’0 accelerate
convergence, a multigrid (MG) scheme was implemented. A solution is first obtained on the
coarsest grid using the strategy described above. This solution is then interpolated to obtain
a starting iterate on the next finer grid (the so-called ‘full multigrid procedure’). After performing
a fcw (two to five) outer iterations on the finer grid, the process is transferred to the coarser grid.
The equations solved on the coarse grid are those solved in the first step, when this was the only
grid used, except for additional source terms.4 This solution yields a correction to the fine-grid
solution, which removes error components with long wavelength. The procedure is repeated until
the solution on the finest grid converges using the so called ‘V-cycles’.‘

The coarser CVs are constructed by amalgamating four fine-grid CVs, see Figure 3. The nodes
on the two grids do not coincide and, therefore, transfer of variables between the two grids has to

308 I-. SC‘llKL(’K AYD M PERIC’

Fine grid
,overlqregion, , ,

se grid CV

grid CV

Coarse grid ‘Block boundary overlap region

Figure 3. Coarse- and fine-grid CVs of the multigrid algorithm, also showing overlap region near block boundary

be performed by interpolation. With the MC; method, the computing time increases linearly as
the grid is refined. resulting in substantial savings.

3. PAKAELELIZATION STRATEGY

In this section, the strategy for the concurrent algorithm is described. The method is based on
data parallelism. i.e. the same program runs on every processor with difterent data. The solution
domain is subdivided into non-overlapping subdomains, and each subdomain is assigned to one
processor. As can be seen from equation (7) . the equation for each C V requires \dues from its
neighbours. Therefore, the control volumes along subdomain boundaries need values from CVs
allocated to neighbouring processors. In a multiprocessor with distributed memory, it is neces-
sary for each processor to store some data calculated by neiglibouring processors in its memory.
Each time a processor updates a wriablc which is needed by the ncighbour processor, it is copied
to the neighbour processor’s memory. We ume here that a five-point discretization scheme is
used so that data from only one node on the other side of the subdomain boundary is needcd; scc
Figure 4. For more complex schemes, data from more than one line of CVs along the boundary
has t o be exchanged and stored. This region is called the ‘overlap region’.

In this study. only structured regular grids are considered. Each subdomain is. thcrcforc,
a rectangle of N i x I V ~ CVs. Also, each subdomain boundary is assumed to be common to only
two processors; this condition has to be relaxed in complex geometries, where the global (ovcrall)
grid may be unstructured or block-structured.

In the SIM I’LF;, algorithm, the variable values needed to calculate the coeficients and source
terms arc taken from the previous iteration. Thcrcforc, they can bc calculated in parallel.

Due to recursive data dependencies in the ILI! alg m. its global paralieiization so that
convergence is achicvcti in the samc number of iteratio n a singfe processor is possiblc only
when the dimension of the processor configuration is one order lower than the grid dimension’
(a ring lor 2D and an array for 3L> problems). The same is true for conjugate gradient type of

A IJAKALLtL MI:LTIGRII) SOLVFK

b)

. I .

309

. .

-1 i
F I ~ U W 4 I>ecompo5itioii of a single doindin (a) into four aubdomains (b), shoaing the overlap region [open cells)

solvers, which arc also popular in computational fluid dynamics. The loss of time due to
communication and synchronization is strongly dependent on the number of grid points per
processor and is a limiting factor for complex grids, since such a parallelization is only possible on
logically rectangular blocks. Therefore, the equation systcm is split into subsystems, one for each
subdomain, and these smaller systems are relaxed separately. Of course, this decreases the
convergence rate, but it offers more flexibility and, in most cases. yields a shorter computing time
than global parallelization of the single domain solver. There are two possible modes of
communication: data can be exchanged after each inner iteration (ti1 mode, shown in Figure 2) or
only after a complete outer iteration (EO mode). One expects the EO mode lo have slower
convergence than the EI mode due t o weaker coupling between the subdomains; however, the
communication is substantially reduced. so the overall cost may be lower for computers with long
set-up times: scc bclow.

The exchange of the data between the neighbouring processors is local and can be performed in
parallel. In the EI mode. i t is done after each inncr itcratitrn, before assembling the pressure-
correction equation and after correcting velocity field, as shown in Figure 2. In EO mode, local
communication in solver is done only after the final inncr iteration. In the multigrid case,
additional data exchange is needed after the restriction of variable values from the fine to the
coarse grid, since the neighbour coarse grid nodes lie outside the overlap region of the finer grid;
see Figure 3.

Somc ylohcrl communication is also needed, e.g., to sum the residuals for completion criterion.
The residual sums of all subdomains havc to be collected, and the decision whether to stop or go
has to be broadcast to all the processors. This is normally done after each ouler iteration,
and after each inner iteration. In the unless a fixed number of inner iterations is prescribed

310 E. SCHRECK AND M. PERIe

present algorithm. pressure is kept fixed at one node, but pressure correction is allowed to float;
therefore. the pressure correction value at the refercncc nodc has to be substracted from values at
all other nodes. This requires broadcasting the reference pressure correction. which is done once
per outer iteration; see Figure 2.

I n the above discussion. the term 'neighbouring processor' means a processor which performs
calculations on a neighbouring subdomain, i.e. a logical neighbour processor. If the logical
neighbouring processors are connected via hardware channels, the communication may be very
fast. On the other hand, the communication with physically remote processors is slower and may
have long set-up times. However, if processors communicate via a bus system, there is 110

distinction between neighbour and remote processors.
One objective of the present study is to obtain portable parallel programs, i.e. it should be

possible to implement them easily on parallel computers with different architectures. This aim is
achieved by separating thc computation and communication into different subroutines. The
communication subroutines are further divided into communication primitives and higher-level
routines. When porting the program to another cornputcr, only the communication primitives.
which are small subroutines, have to be rewritten. It is expected that in the future these routines
will be available in libraries so that porting of parallel CFD programs will become akin to porting
of programs Tor graphical data presentation.

4. EFFICIENCY ANALYSIS

For analysis of the performance of parallel algorithms and comparison of algorithms and parallel
computers, the speed-up factor and efficiency arc the commonly used measures.' They are defined
as follows:

where T, is the execution time for the best serial algorithm and T,, is the execution time for
parallel algorithm using n procesqors.

The achieved speed-up is typically less than n (the ideal casc), which corresponds to an
efficiency of 100%. Note that the efficiency for n = l may not be 1000/, as the parallelized
algorithm may bc slower on one processor than the best serial algorithm: this is an important
issue which is often ignored by using T , instead of T, in the above expressions. The loss of
cfticiency is mainly due to the following factors:

time needed for local and global communication which halts computation (parallel effici-
ency, Err) .
increase in the number of inner and/or outer iterations necessary to fulfil the convergence
criterion, due to the changes in the algorithm required to parallelize it (numerical eficiency,
EF") ,
idle time of processors caused by uneven load, i.e. different numbcr of CVs per processor
(load-hahnr-ing Pffrciencj:, ELh).

If the processors are synchronked to start each iteration at the same time, the duration of an
iteration is dictated by the processor with the largest number of CVs: all other processors have
some idle periods (delays may also occur due to boundary conditions, different number of
neighbours, etc.. but these effects are neglected in this study). This effect may bc avoided by
making sure that all subdomains have the same number of CVs. Under these conditions LAb= 1,
so only the first two factors need be considered. This is done in the present study.

A PARALLEL MIJLTIGRID SO1,VER 31 1

The total execution time of a parallel algorithm on n processors is the sum of calculation timc,
T F C , and communication time, TFm:

where N;" is the maximum number of CVs treated by any processor, s is the computing time per
floating point operation, in is the mean number of floating point operations per outer iteration per
CV, k , is the number of outer iterations and tym is thc mean communication time per outer
iteration.* Values with subscript n depend on the number of processors used.

Inserting expression (1 1) into the definition of the total efficiency yields

whcre tEalc = N77i,, is the mean calculation time per outer iteration and N" is the total number of
CVs. Since, in the present study, all subdomains always had the same number of CVs, N;' = N " / n
and ELh = 1, so the total efficiency equals the product of the numerical and parallel efficiencies.

The numerical efficiency is defined as the ratio of the total number of floating-point operations
per CV in the serial algorithm, i,k,, to the total number of operations in the parallel algorithm on
n processors, i,,k,, required to reach the same convergence criterion. I t does not depend on the
performance characteristics of the computer.

The parallel efficiency is dclined as thc ratio of the computing time when using IZ processors,
= Nt;'si,k,, to the sum of computing time T:"'" and communication time tE""'k,,. The

communication time can be furthcr split into local and global communication, as will be
discussed later.

In order to parallelize a numerical solution procedure, it may be neccssary to modify the serial
algorithm. Tn that case, i, is not the same as is. Thc number of floating-point operations per outer
iteration is not constant because the number of inner iterations may vary, unless it is fixed and no
convergence check is applied to the inner iterations (which is possible if one has experience with
previous calculations of similar problems). In any case, the variation is usually not very large. The
numerical efficiency is, therefore, not easy to measure but, by assuming that i t and i, are
approximately equal, the ratio of thc numbers of outer iterations is a good estimate. A more exact
value can be obtained by measuring the total and parallel efticiencies and calculating En""" from
cquation (1 2).

The total efliciency is easily determined by measuring the computing time necessary to reach
a converged solution. The parallel efficiency cannot be measured exactly as it depends on the
number of data transfers between processors, which depends on the number of inner iterations
per outer iteration. However, by using a fixed number of outer iterations on one and n processors,
the measured total efficiency will be equal to the parallel efficiency, since in that case i l = i, and
E:""'= 1. This approach was used in all calculations presented in the next section.

5. RESULTS OF TEST CALCULATIONS

The parallelized code was implemented on three different parallel computers, whose character-
istics are summarized in Table I.

* This assumes that communication and processing cannot be simultaneous. which is not true for all parallel computers.
However. it is true for computers uscd and, since it represents the limiting (worst) case, it is worth studying such a case
first. For machines with parallelism in communication and calculation, t;" rcprcsents only the communication which
halts computation.

312

Table I . I'srforniancc characteristics of computers uscd

-A. 33 1 4 045 10
1 xo 1.4 0.45 81
56 1.3 0.35 20

1x0 1.3 0.35 63
1340 1 4 0.35 469
2000 11.6 0.1 1 220
33 I0 2.0 0.1 I 3 64

* Thc sct-up times for Suprcnum art' hahect for messagcs of cS0 bytes.

The first was a Meiko Computing Surface with 64 T8OO transputers with a clock rate of
25 MHz. Each transputer has 4 MI3 of memory. The four transputer links are conriccted to
routing chips which can be programmed to establish the desired configuration. The constraints
are that every transputer can be connected to at most four physical neighhours. and one
transputer is connected to the hosi. The configurations used wcrc the ring and the surface of
a cylindcr (thorus). Two communication possibilities existed: (i) the four hardwired links (c h m -
nc l s) , with very short set-up time. but communication only with t he four nearest neighbours:
(ii) trlrnsports a soft link that can bc cstablished at run time to any processor, but with an order
of magnitude longer set-up time (see Table I).

The second computer was :I Psrsytec Superclustcr, which uses the same transputers (256 of
them) and a similar archilecture. Here, three communication possibilities existed: (i) rlirnih liriks,
similar to the above-mentioned channels but equipped with a timeout inechanism and, therefore,
somewhat slower, (i i) wcssrrgt. p o r l s with more software support and flexibility but still slower.
and (iii) input'output procedures of the Hclios operating system, the most comfortable but the
slowest option (see Table I).

Thc third computer uscd was a Suprenuin with 20 nodes divided into two clusters. Each node
consists o f a Motorola 68020 (20 M H L) processor, 8 MB memory. a 68881 scalar coproccssor and
a Weitek vector coprocessor. Due to problems with the autovcctorizing compiler, only the scalar
coprocessor was used. The nodes in each cluster are connected via ail intracluster-bus, olfering
two communication possibilities: (i) asynchronous and (i i) synchronous. with half the set-up time.

'The major parameters characterizing these computers and influencing the performance of
a parallel algorithm are: (i) the set-up timc,t"', required to enable message passing; (ii) the time
necdcd to perform one floating-point operation, T and (iii) the rate at which data is transferrcd
between processors. Rlr . As will be shown later, the ratio o f t " to T affects strongly the efliciency o f
parallel computing.

_ 1 1 YS1 i'CISi' 1

The first lest case was laminar flow in ;t pipe with an obstacle. The Reynolds number was
(R e =) 100. and the boundary conditions wcrc: no slip a t the walls, a parabolic velocity profile a t
the inlet, the radial velocity and radial gradient of the axial velocity are Lero at the axis; and at the
outlet, zero gradients. The grid and the predicted streamlines are shown in Figure 5. The solution
domain was divided into stripes a s indicaicd in Figure 5(3}> due t o the large aspect ratio o f the
domain (25 : 1). Ilp to 756 x 64 ('V and 16 processors were used.

The measured cll'icicncics for \. arious grid sires and number of processors are shcnvn in
Tables I1 IX. Presented arc the total efficiency, E:;)'. and the parallel efliciency, EE''r, dehied in
Section 3. Thc xiumcric,ii ctliciency is the ratio of the total and parallel cfticmcies.

A PAKALLFL MULTIGRID SOLVFR 313

Figure 5. Numerical grid (a) and predicted strcamlincs (b) for the test case I , indicating partitioning into stripes

Both single-grid (SG) and multigrid versions of the solution method were tested.
The parallel eficiencies of the single-grid algorithm with the EI mode of communication on the

Meiko transputer system are shown in Table 11. For a fixed number of processors, the efficiency
increases as the grid is refined. At fixed grid size, the efficiency decreases as the number of
processors is increased. This behaviour was observed in all cases and on all computers and is due
to the following factors. When the number of CVs in each direction is increased by a factor of two,
the calculation time of each processor increases by a factor of four, but the number of boundary
CVs and, therefore, the communication time increase by a factor of two (ignoring set-up time).
Thus the calculation time varies linearly with the number of CVs while the communication time
varies as the squarc root of the number of CVs. Therefore, the ratio of the communication to
calculation time is reduced as the grid is refined and the efficiency is increased.

In Tablc 111, the total eficiencies are presented. They show the same dependence on the grid
size and the number of processors: but are lower due to the numerical efficiency. Comparison of

Table 11. Parallel efficiency for various grid sizes and num-
bers of processors on the Meiko transputer system (singlc

grid, EI mode)

L y (Oh)

I ? 32 x 8 64x Ih 1 2 8 x 3 2 256x64

1 i 00 100 1 00 100
- 97 99 99 Y9
4 89 95 98 98
8 77 90 95 9:

16 57 78 90 94

-l

314 E. SCHREC'K AND M. €'ERIC

Table 111. Total efficiency for various grid u e s and num-
bers of processors on the Meiko transputer system (single

grid, EI mode)

li 3 2 x 8 6 4 x 16 128x32 256x64

1 100 100 100 1 00
2 93 98 104 YY
4 83 84 97 96
8 58 79 94 95

16 36 60 89 90

Table 1V. Total efficiency for various grid siLes and num-
bers of processors on the Meiko transputer system (single

grid, EO mode)

6 4 x 16 128x32 256x64 11 3 2 x 8

1 100 100 100 1 00
2 97 too 99 99
4 S 9 65 76 86
8 36 83 74 90

16 32 68 57 72
~~ ~~ ~~ ~ ~ ~ ~~

Tables I1 and 111 reveals that the numerical efficiency behaves like the parallel efficiency. This is
because the rate of convergence is mostly affected by the ratio of the number of inner boundary
nodes to the total number of nodes. For a given number of processors, the rate of convergence is

ffected on finer grids. The same is true if the number of processors is reduced at constant grid
size.

The etTect of the introduction of inner boundaries on the rate of convergence (i t . the numerical
efficiency) cannot be predicted due to the strong non-linearity and coupling of the equations
solved, it is also problem-dependent. However. the trend observed above is rather a rule than an
exception, as the results of test case 2 will show. This is an important issue which is often ignored
by concentrating on parallel efficiency alone.

In Table IV the total efficiencies obtained with the EO mode of communication are presented.
For the EO mode, the parallel efficiency is much better due to reduced communication, but the
numerical efficiency is lower due to weaker coupling between thc subdomains. The ratio of the
numerical efficiencics of the EI and EO modes is independent of computer performance.
However, as indicated in the previous scction, the parallel efficicncy depends strongly on the ratio
of the communication to the arithmetic performance. Therefore, on computers with slow
communication, the increased E r r in the EO mode can compensate for the reduced so the
EO mode might be preferable. However, on the transputer rystem, the EI mode is obviously the
better choice as revealed by Tables 111 and IV. This example demonstrates the fact that the most
eflicient algorithm for a given problem depends on the hardware used.

Tables V and VI show the results obtained on the Suprenum. The Suprenum has a lower ratio
of communication speed to arithmetic performance than the Meiko transputer system (due lo the

A PARALLI:L MIJLTIGRID SOLVER 315

Table V. Total efficiency for various grid sires and numbers
of processors on the Suprenum (single grid, El mode, asyn-

chronous)

12 32 x 8 6 4 x 16 128x32 256x64

1 100 100 100 100
2 74 91 102 96
4 40 65 88 94
8 16 45 75 90

16 5 20 51 79

_ _ ___ - ._ - ~~~ ~

Table Vl. Total efficiency for various grid sires and num-
bers of processors on the Suprenum (single grid. EO mode,

asynchronous)

EY (Yn)

n 3 2 x 8 6 4 x 1 6 128x32 256x64

1 100 100 100 100
2 90 98 98 99
4 46 61 75 86
8 20 71 71 90

16 1 0 45 52 71

Table VII. Total efficiency for various grid sizes and num-
bers of processors on the Suprenum (single grid, EI mode,

synchronous)

E F (Yo)

n 3 2 x 8 6 4 x 1 6 128x32 256x64

1 I 0 0 100 100 100
2 80 94 102 97
4 51 72 91 94
8 23 56 81 91

16 9 29 63 83

long set-up time). All trends of efficiency versus grid size and number of processors observed for
the transputer system remain valid for the Suprenum. The total efficiency on the Suprenum is,
except for large numbers of processors. higher for the EO communication mode than for the EI
mode, since the gain in parallel efficiency in the EO mode compensates for the loss of numerical
efficiency. For the transputer system, the EO mode is significantly less efficient than the El mode,
since the loss in the numerical cfficiency is far greater than the gain in parallcl efficiency. Tablc VII
shows results obtained on the Suprenum using synchronous communication in thc EI mode. I n
this case, the set-up time is half of the prior one so the efficiencies are better than those in Table V.

316 F. SCHREC'K A N D M. PERI~ :

Table VIII . Performance of the single-grid and multigrid method on a 256 x 64 CV grid on
the Meiko transputer system (E l mode)

Single-grid method Multigrid method

No. of
n Time i s) (Y o) iterations

1 27000" 100 I596
2 13690 YY 1600
4 699 1 96 1623
8 3568 95 I637

16 1870 90 1674

_ _ _ _ _ _ _ ~ _ _ _ ~ __ ____

No. of
Time (s) F.': (%) iterations

I3Yo" I00 49

34s 99 49
183 95 49
101 86 49

* Estimated.

The fact that the total eficiencies for the 128 x 32 CV grid and El communication mode are
higher than 100% when two processors are used is surprising. Only for this case is the number of
iterations required to reach convergence lower than with one processor, which resulted in
unexpected rise in efficiency. A possible explanation is that the increased number of inner
iterations (with one processor. only one inner iteration is performed in momentum equations)
caused thc reduction in the number of outer iterations. This is an cxccplion; in most applications,
eficiency is reduced as the number of processors is increased.

The calculations discussed so far were performed with the SG algorithm. On fine grids, the
multigrid method reduces the number of iterations arid thus the computing time. In a multigrid
algorithm, a sequence of grids or varying refinement is used. This obviously effects the eficiency
of the parallelization. W-hen a large number of processors is used on a coarse grid, the commun-
ication time outweighs the computing time (i.e. E r r < 50%), see Table VIII. On the other hand, in
the multigrid procedure, it is essential that a sufficient number of iterations especially on the
coarsest grids be performed. Thus. for a given grid, the total efficiency will be lower for the
multigrid than for the single-grid algorithm. The results of calculations presented in Table VIIT
demonstrate that this is indeed so.

An interesting observation from Table VIII is that the number of iterations on the finest grid in
the multigrid algorithm is independent of the number of processors. This indicates that the
numerical efficiency is very high. Of course, more work is done as the number of processors is
increased, since the numbers of outer iterations on the coarse grids and inner iterations are
increased. That the efficiency of the multigrid acceleration of convergence does not deteriorate
more is due to thc nature of the error components eliminated on each grid. The high-frequency
errors, which are eliminated on fine grids, are local in character. Therefore, there is no need for
strong coupling of subdomains on the fine grids. The low-frequency errors have global character
and require treatment of the solution domain as a whole. However. these errors are eliminated on
the coarsest grids, whcre strong coupling of subdomains is provided by the grid sparsity (larger
overlap region, see Figure 3). Increasing the number of outer and inner iterations on the coarsest
grids ensures that an accurate solution is obtained at a moderatc incrcase of computing time,
since one coarse-grid iteration consumes only a fraction of the time needed for one fine-grid
iteration (e.g. with five-grid levels, 256 iterations on the coarscst grid last as long as one iteration
on the finest grid).

The negative effect of more iterations on the coarsest grid depends on the communication
performance of the computer. Especially critical is the set-up time for the initialization of data
exchange. since the amount of data to be exchanged is low but the frequency is high. Of the

A PARALLEL MIJLI’IGRII> SOLVI:K 317

‘Table IX. Efliciencq of parallel computation For test case 1 on different computers using 16 processors.
dilkrent grids and dilferent communication options

Cornpu ter r C “ x 3 2 r 8 6 4 x 1 6 128x32 256x64 256 x 64

Mciko (c hiirinelb) 10 57 78 90 94 86

Pnr5ytec (w i ~ , \ port\) 67 79 59 82 91 72
Parstec (d u r d ~ h X \) 20 43 71 88 93 80

Meiko (trtinsport 5) 81 20 48 76 89 64
Suprcnuni (s j r ~ Izrorious) 200 14 39 70 89 56
Suprcnuni (nsv:nc/irorzoir\) 3 64 8 26 57 82 42
Parsytcc (Izclro5) 469 4 13 37 64 24

computers used. Suprcnum was the worst in this regard, as shown in Table 1X; it i s better to do
the coarse-grid calculations on fewer processors and leave the others idle.’ However, this
approach was not attempted here. Although the multigrid method operates with lower total
efficiency (86% versus 90%), it is still about 20 times faster on the 256 x 64 CV grid than the
single-grid version. as the computing times shown in Table VIIl demonstrate.

The set-up time is the crucial parameter influencing communication when the amount of
transferred data is low. Table 1X shows efliciencies Ey:; and EyA for various grids, computers and
communication options along with the ratio of I“ to 5. The highest efficiencies are always
achicved for the shortest set-up time. The difference would diminish if the grid were further
refined. The effect remains serious for the multigrid algorithm. since it always uses very coarse
grids; see Table IX.

7’c..rt C n S P 2

As the second test case. natural convection in a closed cavity is considered. The predicted
isotherms and streamlines arc presented in Figure 6. The direction of gravity is downward. The
left and right walls were kept at constant dimensionless temperatures T, = 1 and Tc = 0, respect-
ively. The top and bottom walls are adiabatic. The fluid properties were chosen such that the
Kayleigh number is lo4, with I’randtl number P r z 0 . 7 1 (air). Since the geometry of this test case is
square, various subdi\isions were considered: I I stripes in either direction or 1 1 , x n4’ blocks in x-
and p-direction (where i~ = n ,?~~) . This otfered the posibility of studying the effects on efficiency of
the shape of subdomains and the number of neighbours.

When measuring parallel efficiency, the numbers of inner iterations for the various variables
wcrc specified as follows: three for I1 and 17, 14 for pressure correction and 4 for temperature. This
choice is based on average numbers resulting from convergence criterion for inner iterations for
niedium-si,x grids. The global communication for convergence check was performed after every
inner iteration.

In the first test case. the mass llow rate was prescribed and the Row had- . in spite of the two
recirculating regions a predominant direction from inlet to outlet. Thc buoyancy-driven Row is
purely recirculating and the flow rate is not known t i priori. ‘There is an additional equation to be
solved (for temperaturc) and the non-linearity is more pronounced.

Whereas i t was natural t o create subdomains by cutting the domain into stripes in the first test
case, in the second test case the choice is not obvious. In order to test the cffect of the type of
domain decomposition on efficiency. calculations were performcd on a I28 x 128 (’V grid using

318 E. SCIlRECK AND M. PER16

a)

adia h atic

adiabatic

b)

/----- ---- ----

Figure 6. Predicted streamlines (a) and isotherms (b) for the test case 2

the Mciko tranputcr system with various subdomain shapes. from horizontal stripes to squares to
vertical stripes. The efficiencies obtained are presented in Tables X and XI. Two important efTects
are noticeable:

(1) the highest efficiency is obtained for square subdomains, and
(2) the efficiency is not the same for horimntal and vertical stripes of the same s i x

The first effect is due to two factors. Firstly, the number of boundary values which need to be

A PARALLEL MIJLTTGRID SOLVER 319

Table X. Total efficiency for the test case 2 on the Meiko transputer system using
various grids and numbers of processors (single grid, EI mode)

Processor configuration E p (%)

I 1 n.a '1Y 1 6 x 1 6 3 2 x 3 2 6 4 x 6 4 128x128

1 1

2 I
2

1
4 2

4

1
8 2

4
8

1
2

16 4
8

I 6

1

2
1

4

1

8
4
2
I

16
8
4
2
1

3 -

100

88
94

68
80
76

44
57
57
53

30
34
37
37
3 1

100

93
96

75
88
79

58
69
71
61

44
53
58
55
49

100

93
95

85
90
87

78
84
85
82

68
76
78
77
72

100
~

91
94
91

87
01
90
86

81
86
87
85
77

Table XI. Performance of the single-grid and multigrid method for test case 2 on the Meiko transputer
system using a 128 x 128 CV grid and various processor configurations (El mode)

Processor configuration Single-grid method Multigrid method

No. of No. of
f7 n x n, Time (5) kdF (Ynj iterations Time (s) ((Yo) iterations

1 1 1

1 4
4 2 i 7

4 1

1 8
2 4

8 4 2
8 1

I 16
2 8

16 4 4
8 2

16 1

29140"

7978
77hX
7985

4187
401 8
4033
4250

2256
2113
2090
2 147
2376

100

91
94
91

87
91
90
86

81
86
87
x5
77

1140

1 1 60
1144
I169

1178
1160
1172
1193

1173
1177
1 I 8 6
I193
1282

1131"

335
307
31x

196
174
173
224

131
103
100
122
145

100

84
92
89

72
81
82
63

54
69
71
58
49

20

22
21
21

23
22
21
28

21

23
28
28

33
-I

cxchanged is lower for square subdomains than for stripes. For example. with a grid of N x N
CVs, each stripe has two boundaries with 2N total points (except for the first and last stripes; their
effect is negligible for large n). Using square subdomains results in four bondaries per subdomain
with 4N 'n' points (except for boundary subdomains, where the multiplier four is replaced by

320 1: S('HKI (' K AVD M I'FRIC'

three or two). For computers with short set-up times, this gives shorter communication times.
Howcvcr, on computers with relatively long set-up times (,like Suprcnuin), this arrangement m a y
bc Icss efticient, since the numbcr of boundaries per subdomain (frcyuency of local communica-
tion) is incrcascd from two tn four.

The second effect has to do with global communication. In ;i ring configuration (stripes),
d from one processor to its neighbour in one direction, so therc arc effectively

2(n - I) data Lransfers. I o r the array arrangement (square subdomains), global communication 1s
parallel in one direction, and only for the last row it is sequential in the cross-direction. so that the
total number of effective data transfers Is 4(n1,' -- I) . Since the amount of data transferred (e.g.,
when checking the convergence: it is usually only the residual sum i.e. only eight bytes). the
set-up time is important. The fact that the global communication is proportional to tz for the ring
topology and to H I , ' ' for the thorus is reflected in higher efficiencies for square subdomains.

The difkreuce in the efliciencies for vertical and horizontal stripes o f the same aiLe is due to the
alignment or non-alignment of stripes with the data storage arrangement (i.e. in onc case: the data
is contiguous, in the other case not). The unfdvourabic arrangement requires additional gather
and scatter opcrations to prepare the data transfer.

The effects of grid size and number of processors on efficiency are in line with those presented
for test case 1. The number of outer iterations in the multigrid algorithm docs not remain the
siimc when the numbcr of processors is incrcascd. as was [he case in the first example. This could
have been achieved by increasing the number of inner and outer iterations on the coarser grids;
however, the efficiency would not be significantly affected.

6. PREDICTION OF PARALLEL EFFICIENCY
For a particular numerical algorithm, it is possible to create a communication model which
allows prediction of parallel efficiency on different computers. This effort has been undcrtaken in
the present case for the following reasons:

(I) to examine the influence of the hardware and system software parameters on the parallel
efficiency of the present algoriihm;

(2) to predict efficiencies for calculations with larger numbers of processors which arc presently
not available, in order to examine the suitability of the algorithm for massive paralleliz-
at i o n:

(3) to check the influence of modifications of the algorithm on the efficiency.

The definition of parallel efficiency is. according t o equation (1 2):
. , . C : l l U 1

To develop a model, it is necessary to express the calculation and communication times in terms
of the hardware parameters.

The calculation time per outer iteration was defined earlicr as t ;u 'c= Nt;' t i , . T'he communica-
tion time per outer iteration, I,, may be split into two parts:

!,LX +. ;lo"

whew tf:c stands for the local and for the global communication times. The local communica-
tion involves only nearest neighbours. I t can take place in parallel and is independent of the
number of procesors (for a given subdomain grid and for I I sutficicntly large. to ignore the effect of

A PARALLEL MWLTIGRID SOLVER 32 I

global boundaries). In the present algorithm, local communication is required at several stages,
(see Figure 2):

(I) transfer of the coefficient AP from the equations for U and I' to enable the assembly of the

(2) transfer of corrected velocities aftcr the pressure-correction equation is solved;
(3) in the multigrid algorithm, transfer of restricted variable values;
(4) transfer of variable values after each inner (EI mode) or outer (EO mode) iteration.

For the EI mode of communication, rFc can be expressed in terms of the most important

pre5sure-correction equation;

parameters as follows:

where N n b denotes the number of neighbour processors (two for stripes and four for blocks in
two-dimensional problems: two to six in three dimensions), N,,, is the number of dependent
variables, Nit is the number of inner iterations for variable i, t" is the set-up time for data transfer
initialimtion, N;' is the number of CVs along interface 1, N f b is the number of bytes per interface
CV which need to be transferred and R,, is the transfer rate in bytes per second. The factor
a accounts for data transfers outside the inner iteration loop (as discussed above) and is equal to
the number of variables whose values need be transferred (four to seven, depending on the
configuration and algorithm).

The global communication consists of reporting global parameters (e.g. residual level) from
each processor to the 'master', or broadcasting a message from the master to all other processors
(e.g. whether to stop calculation or not). In general, one global two-way communication described
above is performed after each inner iteration for each variable, and after each outer iteration.
Another kind of global communication used in the present algorithm is broadcasting of the
pressure-correction value at a location where pressure level is preset; see Figure 2. The global
communication time can then be expressed (for two-dimensional problems) as:

- I)] (t5'+-+ I V),

where n, and n, denote number of subdomains (processors) in x- and y-direction, respectively; /3 is
the number of global communications at the outer iteration level and N F i s the number of bytes
which need be transferred in one global communication. In three-dimensional problems, the
square bracket would contain an additional term, +(n,-l), where n, is the number of sub-
domains in z-direction. It should be noted that an experienced user may reduce the global
communication by specifying a fixed number of inner iterations (sweeps) for each variable,
without checking convergence, thus eliminating the factor xr::; Nit . The overall convergence
need not be checked after each outer iteration. This increases the risk of doing more iterations
than necessary, but may substantially cut communication time on systems with high set-up times.

The expressions for t: and tfjfob can now be inserted into the expression for parallel efficiency,
equation (1 3). By using the measured values of ts', z and R,,, this equation can be used to predict
the parallel efficiency of the given algorithm on a given computer as a function of the number of
processors. In order to verify the model, the efficiencies were calculated and compared with the
measured ones for test case 1 and various grid sizes; see Figure 7. The solid line drawn through the
predictions is to guide the eye; the number of processors must be an integer! The kink at n = 2 is
due to the fact that in this case each processor has only one neighbour and, thus, does only half
the usual local communication.

3 22 E. SCHRECK AND M. PERIC

40 T
A 128r92CV

0 32xBCV
0

2 4 6 8 10 12 14 16

n

0 32xBcv
0 I I I I I I I ! I I ! I I I I

2 4 6 6 10 12 14 16

n

Figure 7 Comparison of measured and predicted parallel effiaency for the test case 1 and various grids, for the Meiko
transputer sy5tem (a) and Suprenum (b)

A PARALLEL MULTIGRID SOLVER 323

As can be seen from Figure 7, the agreement between the predicted and measured efficiencies is
very good (the discrepancy is only a few per cent). It is especially encouraging that the model
works properly for two different computers with an order of magnitude difference in the
communication parameter.

Having verified the model, the limiting factors for two-dimensional problems may be studied.
First, the case of given grid size is analysed. The calculation time depends reciprocally on the
number of processors used. The local communication time depends on the number of the CVs
along subdomain boundaries. For stripes, it is independent of the number of processors while, for
an array, it is inversely proportional to n’l’. Therefore, the ratio ~ ~ , / t C , a ’ ~ is an (stripes) or an’”
(square blocks; not same a). The global communication time is proportional to either n (stripes,
n, = n and ny = 1) or nl/’ (square blocks, n, = ny = n’l’), as discussed in the previous section. The
ratio t ~ l o b / t ~ l c is then hn2 or bnn’”. One can then write

1
1 + m1I2 + bnn”2’

or
1

1 +an+bn2
EnPa’ =

where u and b are independent of n. The parallel efficiency thus approaches zero as n+w (but
obviously no more processors than CVs can be used in the present algorithm).

For a constant number of processors and varying grid size (uniformly in both directions), the
calculation time is proportional to the number of CVs. The local communication time is
proportional to the square root of the number of CVs, and the global communication time
remains constant. Thus, for a given shape of subdomains, the parallel efficiency can be expressed
as

Note that the coefficients a and b are not the same as in equation (16) and do not depend on the
grid size. As the number of CVs grows, the parallel efficiency for a given number of processors
tends to one, as expected.

If the load per processor is kept constant (N:=const.) and the number of processors is
increased as the grid size is increased-which is the most likely case in practice-then the
calculation and local communication times remain constant. The global communication time
increases with n so the parallel efficiency depends then on n as follows

1
or EY=-- 1

l + a + h n 1 + a + bn”*’

for stripes and square blocks, respectively.
In three-dimensional problems, the grid may be partitioned in one, two or all three directions.

In the first two cases, the limiting factors are the same as those given above for stripes and
squares. In the case of subdivisions in three directions with an equal number of subdomains in
each direction (n, = ny = n, = n1/3), the following limiting factors arise:

for given grid size
1 ,Y=

1 +an’/3+bnn”3’

for given number of processors

324 E. SCHRECK AND M. PERIC

.for given load per processor

The limiting factors are, therefore, a function of the dimensionality of processor configuration
and not of the grid dimensionality. The dependence on n is somewhat better for three- than for
two-dimensional configurations (but obviously the formcr are applicable only to three-dimcn-
sional flow problems).

The above analysis shows that global communication is the limiting factor for a large number
of processors. The efficiency can only be improved by modifying the global communication
structure. For example, by implementing a binary tree topology (relatively easy for bus architec-
tures), the global communication cost would be proportional to log n. If global communication is
not performed after every iteration, the factor b is reduced, but the overall trend remains the same.

Parallel efficiencies of the present algorithm were evaluated using the model described above
for a grid of 1000 x 1000 CV, large numbers of processors and two computers (see Figure 8). The
60% level is reached on the Meiko transputer system with about lo00 processors and on
Suprenum at about 450 processors (the maximum number of processors for Suprenum is actually
256). It is interesting that, for a small number of processors (up to 100) and this large grid, the
Suprenum offers slightly higher efficiency than the Mciko transputer system, which seems
contradictory to the results discussed before. This is due to its faster data transfer rate, see Table I,
which becomes important when messages are large. With increasing number of processors, the
message size reduces and the set-up time becomes dominant, causing the efficiency to deteriorate
much faster than is the case with the Meiko computer.

I I I I I I I I I

0 200 400 600 800 1000

n

Figure 8. Predicted parallcl efIiciency for a grid of lo00 x loo0 CV and various numbers of processors, for the Meiko
transputer system and Suprenum

A PARALLEL MULTIGRID SOLVER 325

Table XII. Comparison of computing times and number of iterations for the test
case 2 and a 384 x 512 CV grid on various computers

Computer No. of processors No. of iterations Comp. time (s)

Cray YMP
Meiko
Parsytec

1
48

48
192

21
22

22
28

315
382

527
324

The unfavourable dependence of EX”‘ on n could be avoided only by changing the computer
architecture. For example, if the host (or any other processor) was provided access to the data in
each processor’s private memory, then the gathering or broadcasting could be performed while
other processors are calculating. The negative effect of the global communication on the efficiency
could also be eliminated if it took place simultaneously with calculation. Between two global
communications there is normally a large number of computing operations, so the arrival of
broadcasted information would be at most one iteration late. For a convergence check, this could
be taken into account by adjusting the convergence criterion; for the pressure correction level at
reference location, this would not matter, because at convergence it is supposed to be negligibly
small everywhere.

Finally, calculations for test case 2 and a grid with 348 x 512 CV were performed on the Meiko
transputer system with 48 processors, on the Parsytec transputer system with 48 and 192
processors and on the Cray YMP (no vectorization). Computing times and numbers of outer
iterations are presented in Table XII. The estimated total eficiency of the parallel computing was
about 80% with 48 processors and about 50% with 192 processors. The comparison of comput-
ing times is unfair; a vectorized code would run 5-10 times faster on Cray YMP. The main reason
for using Cray YMP was to estimate the numerical efficiency, since it was the only computer
available which could store the whole grid in single processor’s memory.

In the analysis and test calculations presented above, the least efficient communication was
used; the results should, therefore, be seen as a lower-limit case. Future parallel computers (and
some present ones, which were not available to the authors) will offer one of the above mentioned
possibilities for improving parallel efficiency, so that it is likely to get closer to 100%. The total
efficiency will then depend mostly on numerical efficiency. Multigrid methods appear to retain
their efficiency on the finest grid, at the expense of increased number of iterations on coarse grids,
which indicates that implicit solution methods will run efficiently on massively parallel com-
puters.

CONCLUSIONS

Results of test calculations with the parallelized version of an implicit multigrid finite volume
code and theoretical analysis allow the following conclusions to be drawn:

(1) The efficiency of parallel computing of fluid flows using implicit finite volume algorithms
and domain decomposition technique is influenced by three major parameters:
(a) Increase in the number of inner and outer iterations needed to converge due to the

decoupling of subdomains; this is characterized by the numerical eficiency;
(b) communication time needed to transfer boundary data between processors (local

326 E. SCHRECK AND M. PER16

communication) and for monitoring of convergence (global communication); this is
characterized by the parallel gjiciency;

(c) idle times of processors due to uneven load; this is characterized by the load-balancing
efficiency.

The total efficiency is equal to the product of these three parameters, and provides an
important criterion for evaluating parallel algorithms and computers. The parallel effici-
ency alone is not sufficient for this judgement.

(2) The analysis and numerical experiments show that parallel performance becomes less
efficient as the number of processors grows at constant load, due to the global communica-
tion. The critical hardware parameter is the ratio of communication speed to the calcu-
lation speed, which is dominated by the set-up time for initiating communication between
processors.

(3) The test calculations show that the numerical efficiency of the multigrid algorithm i s not
affected more by the domain decomposition than is the efficiency ’of the single-grid
algorithm. Both are high when boundary data are exchanged between processors after each
inner iteration. The parallel efficiency, on the other hand, is worse for the multigrid
algorithm due to the use of coarse grids with a large number of processors and more
communication per outcr iteration. In spite of that, the total computing times with the
parallel multigrid algorithm are orders of magnitude shorter than with the single-grid
algorithm.

(4) A theoretical model of the parallel efficiency was developed and shown to predict the
measured efficiencies well. It takes into account the number of processors used, the
communication patterns in the algorithm and the hardware characteristics including
computing time per floating point operation, set-up time for communication and the rate of
data transfer between processors.

The results of this study show that implicit solution methods can be adapted for parallel
processors using domain decomposition techniques, provided that the communication is not too
slow compared to the calculation. It is expected that these findings remain valid for three-
dimensional applications, and that the efficiencies will be higher for complex geometries and flow
phenomena, since the number of floating-point operations per control volume and iteration will
be much higher than in the cases studied here, while the amount of communication will remain
more or less the same.

ACKNOWLEDGFMENTS

The Commission of the European Communities provided via ‘Parallel Computing Action’ a part
of the Meiko Computing Surface used in this study; the Deutsche Forschungsgemeinschaft
provided the Parsytec Supercluster within its program ‘Stromungssimulation mil Hochleist-
ungsrechnern’ and financial support through the ‘Sonderforschungsbereich 182’; the Computer
Science Department of the University of Erlangen (IMMD4 and IMMD3) provided access to the
Suprenum and Meiko computers; A. Bohm, J. H. Ferziger and G . Horton helped with many
discussions. The authors thank all of them for their support.

REFERENCES

1 . H. L. Stone, ‘Iterative solution of implicit approximations of multi-dimensional partial differential equations’, S f A M J .

2. S. V. Patankar and D. B. Spalding, ‘A calculation procedure for heat. mass and momentum transfer in three-
Numer. Anal., 5, 530 558 (1968).

dimensional pardbollc flows’, fn t . J . Heat Mass Transfer, 15, 1787-1806 (1972).

A PARALLEL MULTIGRID SOLVER 327

3. M. Peric, R. Kessler and G. Scheuerer, ‘Comparison of finite-volume numerical methods with staggered and colocated
grids’, Comput. Fluids. 16, 389 403 (1988).

4. M. Hortmann, M. Peric and G. Schcuerer. ‘Finite volume multigrid prediction of laminar natural convection:
bench-mark solutions’, I n t . j . numer. methods .fluids, 11, 189-207 (1 990).

5. P. Bastian and G. Horton, ‘Parallelization of robust multi-grid methods: ILU factorization and frequency decomposi-
tion method. in W. Hackbusch and R. Rannacher (eds). Notes on Numerical Fluid Mechanics, Vol. 30, Vieweg,
Braunschweip. 19XY, pp. 24 36.

6. G. Fox el al.; Soluztzg Prohiems on Cbncurrent Prores.sor.v, Yo/. 1. Prentice-Hall. Englewood Cliffs, NJ, 1988.
7. R. Hempel and A. Schuler. ‘Experiments with parallel multigrid algorithms using the SUPRENUM Communications

Subroutine Library’, GMD-Studien, No. 141, 1988.

