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SUMMARY

A finite volume numerical method for the prediction of fluid flow and heat transfer in simple geometries was
parallelized using a domain decomposition approach. The method is implicit, uses a colocated arrangement
of variables and is based on the SIMPLE algorithm for pressure- velocity coupling. Discretization is based
on second-order central difference approximations. The algebraic equation systems are solved by the TLU
method of Stone.! To accclerate the convergence, a multigrid technigue was used. The cfficiency was
examinced on three different parallel computers for laminar flow in a pipe with an orifice and natural
convection in a closed cavity. It is shown that the total efficiency is made up of three major factors: numerical
efficiency, parallel efficiency and load-balancing efficiency. The first two factors were thoroughly investigated,
and a modecl for predicting the parallel efficiency on various computers is presented. Test calculations
indicate reasonable total efficiency and favourable dependence on grid size and the number of processors.
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1. INTRODUCTION

Computational fluid dynamics consumes a large part of available computer resources. The need
for numerical solutions of fluid flows and the accuracy demands are growing as optimization
requirements become more stringent. Many solution methods based on finite difference, finite
volume or finite element approaches have been developed. A number of commercial codes are
available. The desire to solve larger problems more accurately increases the demand for efficiency.

Using vector supercomputers is nearly standard today. However, most algorithms cannot be
vectorized fully. Also, the efficiency of vector processing often depends strongly on the vector
length. The transport of data from memory to the vector pipes is a bottleneck which limits the
computation speed. The performance of vector processors cannot be increased indefinitely since
the chip miniaturization is approaching its limits.

As an alternative, parallel computers offer the promisc of scaleable arithmetic performance.
They can employ microprocessors which are relatively inexpensive but, nevertheless, of high
performance.

Parallcl computers can either be of shared memory or distributed memory architecture. Codes
for shared memory are simpler to write, but memory access conflicts and the memory to CPU
bottleneck prevent this architecture from being truly scaleable. For distributed-memory architec-
tures, no such problems arise. Since each processor has its local memory, there is the possibility of
parallel memory access without conflict. Howcever, there is difficulty in writing programs for such
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computers. Without communication libraries (which are now available for some parallel com-
puters), a programmer himsell has to do the load balancing and the communication between
processors. This has to be done for each program, which is one reason for slow aceeptance of such
computers.

In computational fluid dynamics, coupled non-linear systems of partial differential equations
have 10 be solved. Differential operators are of local character, so the solution domain can easily
be subdivided into subdomains, and cach subdomain can be assigned 1o a single processor.
Communication between the processors is needed only to exchange the data at the subdomain
boundaries. Therefore, one would expect high efficiency if the partitions are properly chosen. For
explicit  solution methods, parallelization is  relatively simple; however, for implicit
methods --which are important for steady lows and flows with slow transients - - parallelization is
less trivial. The partitioning generally decreases the convergence rate. In order to achieve
efficiency, it is necessary to optimize the coupling of the subdomains.

To examine these effects, a parallel algorithm based on domain decomposition has been
developed and applied to several problems on different parallel computers. The main factors
influencing the performance were identified and their effects were studied by measuring comput-
g times as a function of grid size and number of processors used. In particular, the numerical
ellicicncy or convergence rate and the parallel efficiency, which depends on communication
overhead, werc studied. For the latter, a simple model cquation was derived which reproduces the
measured values fairly well,

2. BASIC ALGORITHM

The fluid dynamical problems considered in this study are steady, two-dimensional, laminar flows
in rectangular domains. The conservation equations governing the transport of mass, momentum
and heat read:

div(pV)==90, (N
div(pU,V —p grad U, + Pi))=py,. 2)
/ N
div ( 2TV - grad T) -0, (3)
. Pr

Here p is the density, U, (or U. V) are the components of the velocity vector V in the Cartesian co-
ordinate directions x,, P is the pressure, 7 is the temperature, Pr is the Prandtl number, g is the
dynamic viscosity. ¢g; is the component of the gravitational acceleration vector and i; is the unit
vector in the x;-direction. Fluid propertics are assumed constant, except in the buoyancy term
(Boussincsq approximation).

The solution domain is discretized into rectangular cells. The transport cquations arc applied
to the finite control volumes (CVs). leading to balance equations involving the fluxes through the
CV faces, F,, where i=c, w,n,s (see Figure 1) and the volumetric sources, Q, for each CV:

Fo+b,+F,+F =0 4)
The mass fluxes through CV faces satisfy the continuity cquation and are used to compute the
convective fluxes in the other transport equations in the next iteration. This is the simplest way of
limearnizing the convective terms. For example, convective flux of 4, where ¢ stands for U, Vor T,
through CV face e may be expressed as:

Fé=id,. (5)
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Figure 1. A typical control volume and labelling scheme

Here ni, is the mass flux through the CV face and ¢, is assumed to represent the mean value of
¢ over the CV face; it is expressed in terms of nodal values using second-order central difference
approximations. The diffusive contribution to the flux I is

o I, Ay . Iz
Fi=(T, " ) Ayr 2520 (g —¢p), with Ty=p or 6
e ( P Ay )e Y %, (D= ¢p) o=k Pr (6)
which also represents a central difference approximation. The source terms arc approximated
by assuming that the volumetric source at CV centre, P, represents the mean value over the
whole CV.
For each CV the above approach leads to an algebraic equation of the form

Al'd)l’+2 Anh(f)nb:va (7)
nb
where index nb runs over the nearest neighbour CV centres E, W, N and S. For the whole solution
domain, a matrix equation

[A]{é}={Q} (8)

results. [A] is the square coefficient matrix which, for the above discretization scheme and
structured grids, has non-zcro elements on five diagonals only. {¢} and {Q} are column matrices
whose elements are nodal values of the unknown ¢ and the source term of equation (7), arranged
sequentially along grid lines.

The linearized equations are relaxed iteratively using an iteration matrix [ M ] as follows:

[(M]{¢"i={1Q}—[A-M]ie" "}, (9)

where m is the iteration counter. These iterations are called inner iterations. In the present study
the incomplete lower upper decomposition (11.U) solver of Stone' is used. It is similar to the
standard 1LU method in that the matrix [ M} is a product of a lower [/.] and an upper [U]
triangular matrix, which have the same sparcity as the matrix [ 4]. However, Stone’s method uses
the smoothness property of the solutions of partial differential equations to introduce approxima-
tions which minimize the product [ 4 — M| {¢}. thus leading to & much faster convergence than
the standard LU method. The solver employs a relaxation parameter x, whose value is chosen in
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the range O << 1. Optimum value is problem-dependent, but usually good results are obtained
with =092, which is the value used in the present computations. For % =0, the method reduces
to the standard ILU solver.

The coupled sct of non-linear equations for U, V, T and P is solved sequentially using SIMPLE
algorithm? for pressure-velocity coupling. The discretized momentum equations are assembled
using the latest available values for the other variables (pressure and mass fluxes) and solved with
the TLU solver. For a single domain, one inner iteration is sufficient. The mass fluxes calculated
from velocity components so obtained do not satisfy the continuity equation. Mass conservation
is enforced by correcting the velocities by adding a pressure gradient correction; the correction is

Ui~ (PPl (10)
where Ap is the central coefficient of the U-cquation. Tnserting these velocity corrections into
descretized continuity equation leads to a pressure-correction equation of Poisson type. The
source term in the pressure-correction equation is the imbalance in the uncorrected mass fluxes.
This equation is also solved with the ILU solver; typically, six to ten inner iterations are required.
The mass fluxes, velocities, and pressure are then corrected using the pressure correction. For
natural convection the energy equation is also solved. It is coupled to the momentum equations
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Figure 2. Flow chart of the outer iteration loop (a) and the inper iteration loop (b), also showing local (1.C) and global
(GC) communication in the EI mode
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Figure 2. (Continued)

through the buoyancy term in the latter and the velocities in the former. This completes one auter
iteration of the SIMPLE procedure. The cocefficients of the difference equations are then updated
and the procedure repeated until convergence is achieved. The convergence criterion requires that
the sum of absolute residuals in each equation be reduced by a prescribed amount (usuaily four
orders of magnitude). A flow chart of the outer and inner iteration procedure is presented in
Figure 2. More details of the method can be found in References 3 and 4.

This procedure efficiently removes only those components of the error whose wavelengths are
comparable to the grid spacing. For this reason, the number of outer iterations increases linearly
with the number of grid points, resulting in a quadratic increase in computing time. To accelerate
convergence, a multigrid (MG) scheme was implemented. A solution is first obtained on the
coarsest grid using the strategy described above. This solution is then interpolated to obtain
a starting iterate on the next finer grid (the so-called ‘full multigrid procedure’). After performing
a few (two to five) outer iterations on the finer grid, the process is transferred to the coarser grid.
The equations solved on the coarse grid are those solved in the first step, when this was the only
grid used, except for additional source terms.* This solution yields a correction to the fine-grid
solution, which removes error components with long wavelength. The procedure is repeated until
the solution on the finest grid converges using the so called ‘V-cycles™*

The coarser CVs are constructed by amalgamating four fine-grid CVs, see Figure 3. The nodes
on the two grids do not coincide and, therefore, transfer of variables between the two grids has to



308 E. SCHRECK AND M. PERIC

Fine grid
overlap region

C (788 grid CV

Coarse grid

R Block boundary
overlap region

Figure 3. Coarse- and fine-grid CVs of the multigrid algorithm, alse showing overlap region near block boundary

be performed by interpolation. With the MG method, the computing time increases linearly as
the grid is refined, resulting in substantial savings.

3. PARALLELIZATION STRATEGY

In this section, the strategy for the concurrent algorithm is described. The method is based on
data paralielism, i.e. the same program runs on every processor with different data. The solution
domain is subdivided into non-overlapping subdomains, and cach subdomain is assigned to one
processor. As can be seen from equation (7), the equation for each CV requires values from its
neighbours. Therefore, the control volumes along subdomain boundaries need values from CVs
allocated to neighbouring processors. In a multiprocessor with distributed memory, it 1s neces-
sary for each processor to store some data calculated by neighbouring processors in its memory.
Each time a processor updates a variable which is needed by the ncighbour processor, it is copied
to the neighbour processor’s memory. We assume here that a five-point discretization scheme is
used so that data from only one node on the other side of the subdomain boundary is needed; sec
Figure 4. For more complex schemes, data from more than one line of CVs along the boundary
has to be ecxchanged and stored. This region is called the ‘overlap region’.

In this study. only structured regular grids are considered. Each subdomain is, therefore,
a rectangle of N;x N; CVs. Also, each subdomain boundary is assumed to be common to only
two processors; this condition has to be relaxed in complex geometries, where the global (overall)
grid may be unstructured or block-structured.

In the SIMPLE algorithm, the variable values needed to calculate the coeflicients and source
terms are taken from the previous iteration. Thercfore, they can be calculated in paraliet.

Due to recursive data dependencies in the ILU algorithm, its global paralielization so that
convergence is achieved in the same number of iterations as on a single processor is possible only
when the dimension of the processor configuration is one order lower than the grid dimension®
{a ring for 2D and an array for 3D problems). The same 1s true for conjugate gradient type of
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Figure 4. Decomposition of a single domain (a) into four subdomains (b), showing the overlap region (open cells)

solvers, which are also popular in computational fluid dynamics. The loss of time due to
communication and synchronization is strongly dependent on the number of grid points per
processor and is a limiting factor for complex grids, since such a parallelization is only possible on
logically rectangular blocks. Therefore, the equation system is split into subsystems, one for each
subdomain, and these smaller systems are relaxed scparately. Of course, this decreases the
convergence rate, but it offers more flexibility and, in most cases, yields a shorter computing time
than global parallelization of the single domain solver. There are two possible modes of
communication: data can be exchanged after cach inner iteration (Kl mode, shown in Figure 2) or
only after a complete outer iteration (EO mode). One expects the EQ mode to have slower
convergence than the EI mode due to weaker coupling between the subdomains; however, the
communication is substantially reduced, so the overall cost may be lower for computers with long
set-up times; scc below.

The exchange of the data between the neighbouring processors is local and can be performed in
parallel. In the EI mode, it is done after each inner iteration, before assembling the pressure-
correction equation and after correcting velocity field, as shown in Figure 2. In EO mode, local
communication in solver is done only after the final inner iteration. In the multigrid case,
additional data exchange is needed after the restriction of variable values from the fine to the
coarsc grid, since the neighbour coarse grid nodes lie outside the overlap region of the finer grid;
sec Figure 3.

Somc glohal communication is also neceded, e.g.. to sum the residuals for completion criterion.
The residual sums of alt subdomains have to be collected, and the decision whether to stop or go
has to be broadcast to all the processors. This is normally done after each ouler iteration,
and - uniess a fixed number of inner iterations is prescribed after each inner iteration. In the



310 E. SCHRECK AND M. PERIC

present algorithm, pressure is kept fixed at one node, but pressure correction is allowed to float;
therefore, the pressure correction value at the reference node has to be substracted from values at
all other nodes. This requires broadcasting the reference pressure corrcction, which is done once
per outer iteration; sce Figure 2.

In the above discussion, the term ‘neighbouring processor’ means a processor which performs
calculations on a neighbouring subdomain, ie. a logical neighbour processor. If the logical
neighbouring processors are connected via hardware channels, the communication may be very
fast. On the other hand, the communication with physically remote processors is slower and may
have long set-up times. However, if processors communicate via a bus system, there is no
distinction between neighbour and remote processors.

One objective of the present study is to obtain portable parallel programs, ie. it should be
possible to implement them casily on parallel computers with different architectures. This aim is
achieved by separating the computation and commumication into different subroutines. The
communication subroutines are further divided into communication primitives and higher-level
routines. When porting the program to another computcr, only the communication primitives,
which are small subroutines, have to be rewritten. It is expected that in the future these routines
will be available in libraries so that porting of parallel CFD programs will become akin to porting
of programs for graphical data presentation.

4. EFFICIENCY ANALYSIS

For analysis of the performance of parallel algorithms and comparison of algorithms and parallel
computers, the speed-up factor and efficiency are the commonly used measures.® They are defined
as follows:

. __ s Slot __ T8

S,= E} =T

where T, is the execution time for the best serial algorithm and 7, is the execution time for
parallel algorithm using »n processors.

The achicved speed-up is typically less than n (the ideal casc), which corresponds to an
efficiency of 100%. Note that the efficiency for n=1 may not be 100%, as the parallelized
algorithm may be slower on one processor than the best serial algorithm; this is an important
issue which is often ignored by using 7, instead of 7, in the above expressions. The loss of
cfficiency is mainly due to the following factors:

(1) time needed for local and global communication which halts computation (parallel effici-
ency, EB*),

(2) increase in the number of inner and/or outer iterations necessary to fulfil the convergence
criterion, due to the changes in the algorithm required to parallelize it (numerical efficiency,
ET),

(3) idle time of processors caused by uneven load, i.c. different number of CVs per processor
{load-balancing efficiency, EY).

If the processors are synchronized to start each iteration at the same time, the duration of an
iteration is dictated by the processor with the largest number of CVs; all other processors have
some idle periods (delays may also occur due to boundary conditions, different number of
neighbours, etc., but these effects are neglected in this study). This effect may be avoided by
making sure that all subdomains have the same number of CVs. Under these conditions E®P=1,
so only the first two factors need be considered. This is done in the present study.
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The total execution time of a parallel algorithm on n processors is the sum of calculation time,
T2, and communication time, 7 o™

T,= T+ T3 = N3 ti ko + (5K, (11)

where N;" is the maximum number of CVs treated by any processor, t is the computing time per
floating point operation, i, is the mean number of floating point operations per outer iteration per
CV, k, is the number of outer iterations and ™ is the mean communication time per outer
iteration.* Values with subscript n depend on the number of processors used.

Inscrting expression (11} into the definition of the total efficiency yields

o N®tik, ik, N I
"t RN Tk, k) Gk RNEY TR 1M

= B EPER”, (12)

where 123 = N£¥ i, is the mean calculation time per outer iteration and N is the total number of
C'Vs. Since, in the present study, all subdomains always had the same number of CVs, N§¥=N%/n
and E" =1, so the total efficiency equals the product of the numerical and parallel efficiencies.

The numerical efficiency is defined as the ratio of the total number of floating-point operations
per CV in the serial algorithm, i k,, to the total number of operations in the parallel algorithm on
n processors, i k,, required to reach the same convergence criterion. It does not depend on the
performance characteristics of the computer.

The parallel efficiency is defined as the ratio of the computing time when using n processors,
T =N 1i,k,, to the sum of computing time 75 and communication time 1™k, The
communication time can be further split into local and global communication, as will be
discussed later.

In order to parallelize a numerical solution procedure, it may be necessary to modify the serial
algorithm. In that case, i, 1s not the same as i,. The number of floating-point operations per outer
iteration is not constant because the number of inner iterations may vary, unless it is fixed and no
convergence check is applied to the inner iterations (which is possible if one has experience with
previous calculations of similar problems). In any case, the variation is usually not very large. The
numerical efficiency is, therefore, not casy to measure but, by assuming that i, and i, are
approximately equal, the ratio of the numbers of outer iterations is a good estimate. A more exact
value can be obtained by measuring the total and parallel efficiencies and calculating E;*™ from
cquation (12).

The total efficiency is easily determined by measuring the computing time necessary to reach
a converged solution. The parallel efficiency cannot be measured exactly as it depends on the
number of data transfers between processors, which depends on the number of inner iterations
per outer iteration. However, by using a fixed number of outer iterations on one and » processors,
the measured total efficiency will be equal to the parallel efficiency, since in that case i; =i, and
Eit™=1. This approach was used in all calculations presented in the next section.

5. RESULTS OF TEST CALCULATIONS

The parallelized code was implemented on three different parallel computers, whose character-
istics are summarized in Table 1.

* This assurnes that communication and processing cannot be simultaneous, which is not true for all parallel computers.
However, it is truc for computers used and, since it represents the limiting (worst) case, it is worth studying such a case
first. For machines with parallelism in communication and calculation, 1" represents only the communication which
halts computation.
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Table 1. Performance characteristics of computers used

Computer 1 {ps) R,, (MB/s) 1/7 (MFlops) T
Metko {channels) 22 14 045 10
Meiko (transports) 180 14 0-45 81
Parsytec (dunbh links) 56 13 0-35 20
Parsytec (messaye poris) 180 1-3 0-35 3
Parsytec thelios) 1340 1-4 035 469
Suprenum?® (syncr.) 2000 116 011 220
Suprenum® (asyncr.) 3310 20 O-1t 364

¢ The sct-up times for Suprenum are halved for messages of <50 bytes.

The first was a Meiko Computing Surface with 64 T800 transputers with a clock rate of
25 MHz. Each transputer has 4 MB of memory. The four transputer links are connected to
routing chips which can be programmed (o establish the desired configuration. The constraints
are that every transputer can be connected to at most four physical neighbours, and onc
transputer is connected to the host. The configurations used were the ring and the surface of
a cylinder (thorus). Two communication possibilities existed: (i) the four hardwired links (chan-
nels), with very short set-up time. but communication only with the four nearest neighbours;
(ii) transports  a soft link that can be cstablished at run time to any processor, but with an order
ol magnitude longer sct-up time {see Table I).

The second computer was a Parsytec Supercluster, which uses the same transputers (256 of
them) and a similar architecture. Here, three communication possibilities existed: (i) dumb links,
similar to the above-mentioned channels but equipped with a timeout mechanism and, therefore,
somewhat slower, (1i) message ports with more software support and flexibility but still slower,
and (iii) input/output procedures of the Helios operating system, the most comfortable but the
slowest option (see Table I).

The third computer used was a Suprenum with 20 nodes divided into two clusters. Each node
consists of a Motorola 68020 (20 MHz) processor, § MB memory, a 68881 scalar coprocessor and
a Weitek vector coprocessor. Due to problems with the autovectorizing compiler, only the scalar
coprocessor was used. The nodes in each cluster are connected via an intracluster-bus, offering
two communication possibilities: (i} asynchronous and (ii) synchronous, with half the set-up time.

The major parameters characterizing these computers and influencing the performance of
a parallel algorithm are: (i) the set-up time, ™, required to cnable message passing; (ii) the time
necded to perform one floating-point operation, t and (iii) the rate at which data is transferred
between processors, R,. As will be shown later, the ratio of 1* to t affects strongly the efficiency of
parallel computing,

Test case 1

The first test case was laminar flow in a pipe with an obstacle. The Reynolds number was
{Re=) 100, and the boundary conditions were: no slip at the walls, a parabolic velocity profile at
the inlet, the radial velocity and radial gradient of the axial velocity are zero at the axis; and at the
outlet, zero gradients. The grid and the predicted streamlines are shown in Figure 5. The solution
domain was divided into stripes as indicated in Figure 5(a), due to the large aspect ratio of the
domain (25:1). Up to 256 x 64 CV and 16 processors were uscd.

The measured efliciencies for various grid sizes and number of processors are shown in
Tables 11- IX. Presented are the total efficiency, EJ, and the parallel efliciency, £8*", defined in
Scction 4. The numerical efficiency is the ratio of the total and parallel efficiencies.
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| e

Figure 5. Numerical grid (a) and predicted streamlines (b) for the test case 1, indicating partitioning into stripes

Both single-grid (SG) and multigrid versions of the solution method were tested.

The parallel efficiencies of the single-grid algorithm with the EI mode of communication on the
Meiko transputer system are shown in Table I1. For a fixed number of processors, the cfficiency
increases as the grid is refined. At fixed grid size, the efficiency decreases as the number of
processors is increased. This behaviour was observed in all cases and on all computers and is due
to the following factors. When the number of CVs in each direction is increased by a factor of two,
the calculation time of each processor increases by a factor of four, but the number of boundary
CVs and, therefore, the communication time increase by a factor of two (ignoring set-up time).
Thus the calculation time varies hinearly with the number of CVs while the communication time
varics as the squarc root of the number of CVs. Therefore, the ratio of the communication to
calculation time is reduced as the grid is refined and the efficiency is increased.

In Table 111, the total efficiencies are presented. They show the same dependence on the grid
size and the number of processors, but are lower due to the numerical efficiency. Comparison of

Table I1. Parallel efficiency for various grid sizes and num-
bers of processors on the Meiko transputer system (single
¢grid, EI mode)

Eﬁar (0/0)

n I2x8 64 x 16 128 x 32 256 x 64
1 100 100 100 100
2 97 99 99 99
4 89 95 98 98
8 77 90 95 7
16 57 78 90 94
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Table 1. Total efficiency for various grid sizes and num-
bers of processors on the Meiko transputer system (single
grid, EI mode)

EV (%)

] 32x8 64 x 16 128 x 32 256 x 64
1 100 100 100 100
2 93 98 104 99
4 83 84 97 96
8 58 79 94 95

16 36 60 89 90

Table IV. Total efficiency for various grid sizes and num-
bers of processors on the Meiko transputer system (single
grid, EO mode)

EX (%)

n 32x8 64 x 16 128 % 32 256 x 64
1 100 100 100 100
2 97 100 99 99
4 59 65 76 86
8 36 83 74 90

16 32 68 57 72

Tables 11 and 111 reveals that the numerical efficiency behaves like the parallel efficiency. This is
because the rate of convergence is mostly affected by the ratio of the number of inner boundary
nodes to the total number of nodes. For a given number of processors, the rate of convergence is
less affected on finer grids. The same is true if the number of processors is reduced at constant grid
size.

The effect of the introduction of inner boundaries on the rate of convergence (i.e. the numerical
efficiency) cannot be predicted due to the strong non-linearity and coupling of the equations
solved, it is also problem-dependent. However, the trend observed above is rather a rule than an
exception, as the results of test case 2 will show. This is an important issue which is often ignored
by concentrating on parallcl efficiency alone.

In Table IV the total cfficiencies obtained with the EQ mode of communication are presented.
For the EO mode, the parallel efficiency is much better due to reduced communication, but the
numerical efficiency is lower due to weaker coupling between the subdomains. The ratio of the
numerical efficiencies of the El and EO modes is independent of computer performance.
However, as indicated in the previous scction, the parallel efficiency depends strongly on the ratio
of the communication to the arithmetic performance. Therefore, on computers with slow
communication, the increased EP*" in the EO mode can compensate for the reduced ER™, so the
EQO mode might be preferable. However, on the transputer system, the EI mode is obviously the
better choice as revealed by Tables I11 and IV. This example demonstrates the fact that the most
eflicient algorithm for a given problem depends on the hardware used.

Tables V and VI show the results obtained on the Suprenum. The Suprenum has a lower ratio
of communication speed to arithmetic performance than the Meiko transputer system (due to the
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Table V. Total efficicncy for various grid sizes and numbers
of processors on the Suprenum (single grid, EI mode, asyn-

chronous)
E (%)

n 2% 64 %16 128 % 32 256 x 64
1 100 100 100 100
2 74 91 102 96
4 40 65 88 94
8 16 45 75 90

16 5 20 51 79

Table VI. Total efficiency for various grid sizes and num-
bers of processors on the Suprenum (single grid, EO mode,

asynchronous)
E (%)

n 32x8 64 x 16 128 % 32 256 % 64
1 100 100 100 100
2 90 98 98 99
4 46 61 75 86
& 20 71 71 90

16 10 45 52 71

Table VII. Total efficiency for various grid sizes and num-
bers of processors on the Suprenum (single grid, EI mode,

synchronous)
E' (%)

n 32x8 64x 16 128 x 32 256 x 64
1 100 100 100 100
2 80 94 102 97
4 51 72 91 94
8 23 56 81 91

16 9 29 63 83

long set-up time). All trends of etficiency versus grid size and number of processors observed for
the transputer system remain valid for the Suprenum. The total efficiency on the Suprenum is,
except for large numbers of processors, higher for the EO communication mode than for the EI
mode, since the gain in parallel efficiency in the EO mode compensates for the loss of numerical
efficiency. For the transputer system, the EO mode is significantly less efficient than the EI mode,
since the loss in the numerical efficiency is far greater than the gain in parallel efficicncy. Table VII
shows results obtained on the Suprenum using synchronous communication in the EI mode. In
this case, the set-up time is half of the prior one so the efficiencies are better than those in Table V.
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Table VIII. Performance of the single-grid and multigrid method on a 256 x 64 CV grid on
the Meiko transputer system (EI mode)

Single-grid method Multigrid method
No. of No. of

n Time (s) E¥ (%) iterations Time (s) ER (%) tterations

1 27000 100 1596 1390* 100 49

2 13690 99 1600 -

4 6991 96 1623 345 99 49

8 3568 95 1637 183 95 49
16 1870 90 1674 101 86 49

* Estimated.

The fact that the total efficicncies for the 128 x 32 CV grid and El communication mode are
higher than 100% when two processors are used is surprising. Only for this case is the number of
iterations required to reach convergence lower than with one processor, which resulted in
uncxpected rise in efficiency. A possible explanation is that the increased number of inner
iterations (with one processor, only one inner iteration is performed in momentum equations)
caused the reduction in the number of outer iterations. This is an cxception; in most applications,
efficiency is reduced as the number of processors is increased.

The calculations discussed so far were performed with the SG algorithm. On fine grids, the
multigrid method reduces the number of iterations and thus the computing time. In a multigrid
algorithm, a sequence of grids or varying refinement is used. This obviously effects the efficiency
of the parallelization. When a large number of processors is used on a coarse grid, the commun-
ication time outweighs the computing time (i.e. EP* < 50%), see Table VIIL. On the other hand, in
the multigrid procedure, it is essential that a sufficient number of iterations - especially on the
coarsest grids be performed. Thus, for a given grid, the total cfficiency will be lower for the
multigrid than for the single-grid algorithm. The results of calculations presented in Table VII
demonstrate that this is indeed so.

An interesting observation from Table VIII is that the number of iterations on the finest grid in
the multigrid algorithm is independent of the number of processors. This indicates that the
numerical efficiency is very high. Of course, more work is done as the number of processors is
increased, since the numbers of outer iterations on the coarse grids and inmer iterations are
increased. That the efficiency of the multignd acceleration of convergence docs not deteriorate
morce is due to the nature of the error components eliminated on each grid. The high-frequency
errors, which are eliminated on fine grids, are local in character. Therefore, there is no need for
strong coupling of subdomains on the fine grids. The low-frequency errors have global character
and require treatment of the solution domain as a whole. However, these crrors are eliminated on
the coarsest grids, where strong coupling of subdomains is provided by the grid sparsity (larger
overlap region, see Figure 3). Increasing the number of outer and inner iterations on the coarsest
grids ensures that an accurate solution is obtained at a moderate increase of computing time,
since one coarse-grid iteration consumes only a fraction of the time needed for one fine-grid
iteration (c.g. with five-grid levels, 256 iterations on the coarsest grid last as long as ong itcration
on the finest grid).

The negative effect of more iterations on the coarsest grid depends on the communication
performance of the computer. Especially critical is the set-up time for the initialization of data
cxchange, since the amount of data to be exchanged is low but the frequency is high. Of the
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Table IX. Efficiency of parallel computation for test case 1 on different computers using 16 processors,
different grids and different communication options

EP (%), SG EY (%), MG
Computer Mt 32x8 64x16 128x32 256x64 256 x 64
Meiko {channels) 10 57 78 90 94 86
Parsytec (dumb links) 20 43 71 B8 93 80
Parsytec (mess. ports) 63 29 59 82 91 72
Meiko {transports) 81 20 48 76 89 64
Suprenum (synchronous) 200 14 39 70 89 56
Suprenum (asynchronous) 364 8 26 57 82 42
Parsytec (helios) 469 4 13 37 64 24

computers uscd, Suprenum was the worst in this regard, as shown in Table 1X; it is better to do
the coarse-grid calculations on fewer processors and leave the others idie.” However, this
approach was not attempted here. Although the multigrid method operates with lower total
cfficiency (86% versus 90%), it is still about 20 times faster on the 256 x 64 CV grid than the
single-grid version, as the computing times shown in Table VIII demonstrate.

The set-up time is the crucial parameter influencing communication when the amount of
transferred data is low. Table IX shows efliciencies E%% and £ for various grids, computers and
communication options along with the ratio of ¢* to 1. The highest efficiencies arc always
achieved for the shortest set-up time. The difference would diminish if the grid were further
refined. The effect remains serious for the multigrid algorithm, since it always uses very coarse
grids; sce Table 1X.

Test case 2

As the second test case, natural convection in a closed cavity is considered. The predicted
isotherms and streamlines arc presented in Figure 6. The direction of gravity 1s downward. The
left and right walls were kept at constant dimensionless temperatures 7y =1 and T =0, respect-
ively. The top and bottom walls are adiabatic. The fluid properties were chosen such that the
Rayleigh number is 10*, with Prandtl number Pr=0-71 (air). Since the geometry of this test case is
square, various subdivisions were considered: n stripes in either direction or n, x n, blocks in x-
and y-direction (where n=n.n,). This offered the posibility of studying the effects on efficiency of
the shape of subdomains and the number of neighbours.

When measuring parallel efficiency, the numbers of inner iterations for the various variables
werce specified as follows: three for U and V, 14 for pressure correction and 4 for temperature. This
choice is based on average numbers resulting from convergence criterion for inner iterations for
medium-size grids. The global communication for convergence check was performed after every
inner iteration.

In the first test case, the mass flow rate was prescribed and the flow had--in spite of the two
recirculating regions  a predominant direction from inlet to outlet. The buoyancy-driven flow is
purely recirculating and the flow rate is not known a priori. There is an additional equation to be
solved (for temperature) and the non-lincarity is more pronounced.

Whereas it was natural to create subdomains by cutting the domain into stripes in the first test
case, in the second test case the choice is not obvious. In order to test the cfiect of the type of
domain decomposition on efficiency, calculations were performed on a 128 x 128 CV grid using
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a)

adiabatic

adiabatic

b)

Figure 6. Predicted streamlines (a) and isotherms (b) for the test case 2

the Meiko tranputer system with various subdomain shapes, from horizontal stripes to squares to
vertical stripes. The efficiencies obtained are presented in Tables X and XI. Two important effects
are noticeable:

(1) the highest efficiency is obtained for square subdomains, and
(2) the efficiency is not the same for horizontal and vertical stripes of the same size.

The first effect is due to two factors. Firstly, the number of boundary values which need to be
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Table X. Total efficiency for the test case 2 on the Meiko transputer system using
various grids and numbers of processors (single grid, EI mode)

Processor configuration E' (%)

n fy n, 16 x 16 32x32 64x64  128x 128
1 1 1 100 100 100 100
2 1 2 88 93 93 _

2 1 94 96 95
1 4 68 75 85 91
4 2 2 80 88 90 94
4 1 76 79 87 91
1 8 44 58 78 87
8 2 4 57 69 84 91
4 2 57 71 85 90
8 1 53 61 82 36
1 16 30 44 68 81
2 8 34 53 76 86
16 4 4 37 58 78 87
8 2 37 55 77 85
16 1 31 49 72 77

Table XI. Performance of the single-grid and multigrid method for test case 2 on the Meiko transputer
system using a 128 x 128 CV grid and various processor configurations (EI mode)

Processor configuration Single-grid method Multigrid method
No. of No. of

n My n, Time (s) E° (%) iterations Time (s) EY (%) iterations
1 1 1 29140° 100 1140 1131° 100 20
1 4 7978 91 1160 335 84 22
4 2 2 7768 94 1144 307 92 21
4 1 7985 91 1169 318 89 21
1 8 4187 87 1178 196 72 23
2 4 4018 91 1160 174 81 22
8 4 2 4033 90 1172 173 82 21
8 1 4250 86 1193 224 63 28
1 16 2256 81 1173 131 54 21
2 8 2113 86 1177 103 69 22
16 4 4 2090 87 1186 100 71 23
8 2 2147 85 1193 122 58 28
16 1 2376 77 1282 145 49 28

* Histimated.

exchanged is lower for square subdomains than for stripes. For example, with a grid of N x N
CVs, each stripe has two boundaries with 2N total points (except for the first and last stripes; their
effect is negligible for large n). Using square subdomains results in four bondaries per subdomain
with 4N /n'/? points (except for boundary subdomains, where the multiplier four is replaced by
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three or two). For computers with short set-up times, this gives shorter communication times.
Howcver, on computers with relatively long set-up times (like Suprenum), this arrangement may
be less efficient, since the number of boundaries per subdomain (frequency of local communica-
tion} is incrcased from two to four.

The second effect has 1o do with global communication. In a ring configuration (stripes),
messages are passed from one processor Lo its neighbour in one direction, so there are effectively
2(n— 1) data transfers. For the array arrangement (square subdomains), global communication is
parallel in one direction, and only for the last row it is sequential in the cross-direction, so that the
total number of effective data transfers is 4(n'"* — 1). Since the amount of data transferred {e.g.,
when checking the convergence, it is usually only the residual sum ic. only cight bytes), the
set-up time is important. The fact that the global communication is proportional to n for the ring
topology and to n'? for the thorus is reflected in higher efficiencies for square subdomains.

The difference in the efficiencies for vertical and horizontal stripes of the same size 1s due to the
alignment or non-alignment of stripes with the data storage arrangement (i.c. in one case, the data
is contiguous, in the other case not). The unfavourabic arrangement requires additional gather
and scatter operations to preparc the data transfer.

The effects of grid size and number of processors on efficiency are in line with those presented
for test case 1. The number of outer iterations in the multigrid algorithm does not remain the
samc when the number of processors is increased., as was the casce in the first example. This could
have been achieved by increasing the number of inner and outer iterations on the coarser grids;
however, the efficiency would not be significantly affected.

6. PREDICTION OF PARALLEL EFFICIENCY

For a particular numerical algorithm, it is possible to create a communication model which
allows prediction of parallel efficiency on different computers. This effort has been undertaken in
the present case for the following reasons:

(1) to examine the influence of the hardware and system software parameters on the parallel
efficiency of the present algorithm;

(2} to predict efficiencies for calculations with larger numbers of processors which are presently
not available, in order to examine the suitability of the algorithm for massive paralleliz-
ation;

(3) to check the influence of modifications of the algorithm on the cfficicncy.

The definition of parallel cfhiciency is, according to equation (12):

rreale
[ par I !

= Tealc | 7rcom = com Jgcale” (1 3)
Tn +7n I_i_ln /tn

To develop a model, it is necessary to express the calculation and communication times in terms
of the hardware parameters.

The calculation time per outer iteration was defined earlicr as r&'° = N 7i,. The communica-
tion time per outer iteration, t,, may be split into two parts:

(o = Li}oc ST

where 1l stands for the local and £'" for the global communication times. The local communica-
tion involves only nearest neighbours. It can take place in parallel and is independent of the
number of procesors (for a given subdomain grid and for » sufficiently large. to ignore the effect of
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global boundaries). In the present algorithm, local communication is required at several stages,
(sec Figure 2):

(1} transfer of the coefficient Ap from the equations for U and V to enable the assembly of the
pressure-correction equation;

(2) transfer of corrected velocities after the pressure-correction equation is solved;

(3) in the multigrid algorithm, transfer of restricted variable values;

(4) transfer of variable values after each inner (EI mode) or outer (EO mode) iteration.

For the EI mode of communication, £)°° can be expressed in terms of the most important

parameters as follows:
Ny Nov pgev pydb
w o NN
rﬁf’°=2(:x+ Y N:’) (N,,bt“Jr X ) (14)
i1

=1 tr

where N, denotes the number of neighbour processors (two for stripes and four for blocks in
two-dimensional problems; two to six in three dimensions), N, is the number of dependent
variables, Nitis the number of inner iterations for variable i, t* is the set-up time for data transfer
initialization, N§* is the number of CVs along interface I, N{® is the number of bytes per interface
CV which nced to be transferred and R, is the transfer rate in bytes per second. The factor
a accounts for data transfers outside the inner iteration loop (as discussed above) and is equal to
the number of variables whose values need be transferred (four to seven, depending on the
configuration and algorithm).

The global communication consists of reporting global parameters {e.g. residual level) from
each processor to the ‘master’, or broadcasting a message from the master to all other processors
(c.g. whether to stop calculation or not). In general, one global two-way communication described
above is performed after each inner iteration for each variable, and after each outer iteration.
Another kind of global communication vsed in the present algorithm is broadcasting of the
pressure-correction value at a location where pressure level is preset; see Figure 2. The global
communication time can then be expressed (for two-dimensional problems) as:

Nour Ndh
t5‘°b=(ﬁ+2 z N‘:‘) [ 1)+(,— )] (tﬁ*+-k-"—), (15)
i=1 tr
where n, and n, denote number of subdomains (processors) in x- and y-direction, respectively; f§ is
the number of global communications at the outer iteration level and N3° is the number of bytes
which need be transferred in one global communication. In three-dimensional problems, the
square bracket would contain an additional term, +(n,—1), where n, is the number of sub-
domains in z-direction. It should be noted that an experienced user may reduce the global
communication by specifying a fixed number of inner iterations (sweeps) for each variable,
without checking convergence, thus eliminating the factor val N The overall convergence
need not be checked after each outer iteration. This increases the risk of doing more iterations
than necessary, but may substantially cut communication time on systems with high set-up times.
The expressions for 1¢° and t¥°° can now be inserted into the expression for parallel efficiency,
equation (13). By using the measured values of t*, 7 and R,,, this equation can be used to predict
the parallel efficiency of the given algorithm on a given computer as a function of the number of
processors. In order to verify the model, the efficiencies were calculated and compared with the
measured ones for test case 1 and various grid sizes; see Figure 7. The solid line drawn through the
predictions is to guide the eye; the number of processors must be an integer! The kink at n=2 is
due to the fact that in this case each processor has only one neighbour and, thus, does only half
the usual local communication.
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As can be seen from Figure 7, the agreement between the predicted and measured efficiencies is
very good (the discrepancy is only a few per cent). It is especially encouraging that the model
works properly for two different computers with an order of magnitude difference in the
communication parameter.

Having verified the model, the limiting factors for two-dimensional problems may be studied.
First, the case of given grid size is analysed. The calculation time depends reciprocally on the
number of processors used. The local communication time depends on the number of the CVs
along subdomain boundaries. For stripes, it is independent of the number of processors while, for
an array, it is inversely proportional to n'/2. Therefore, the ratio '/t is an (stripes) or an'’?
(square blocks; not same a). The global communication time is proportional to either n (stripes,
n.=n and n,=1) or n'/? (square blocks, n,=n,=n'/?), as discussed in the previous section. The
ratio 180/t is then bn® or bnn'’2. One can then write

\par __ 1 1
Ex “Ttan+bn? O Tyan 4 b (16)
where ¢ and b are independent of n. The parallel efficiency thus approaches zero as n—oc (but
obviously no more processors than CVs can be used in the present algorithm).

For a constant number of processors and varying grid size (uniformly in both directions), the
calculation time is proportional to the number of CVs. The local communication time is
proportional to the square root of the number of CVs, and the global communication time
remains constant. Thus, for a given shape of subdomains, the parallel efficiency can be expressed
as

par _ 1

"t THa(ND) 4 b/NY

Note that the coefficients a and b are not the same as in equation (16) and do not depend on the
grid size. As the number of CVs grows, the parallel efficiency for a given number of processors
tends to one, as expected.

If the load per processor is kept constant (N;'=const.) and the number of processors is
increased as the grid size is increased—which is the most likely case in practice—then the
calculation and local communication times remain constant. The global communication time
increases with n so the parallel efficiency depends then on n as follows

1 1
garz or 73
1+a+bn 1+a+bn

for stripes and square blocks, respectively.

In three-dimensional problems, the grid may be partitioned in one, two or all three directions.
In the first two cases, the limiting factors are the same as those given above for stripes and
squares. In the case of subdivisions in three directions with an equal number of subdomains in
each direction (n,=n,=n,=n'"), the following limiting factors arise:

for given grid size

EPor — !
" 1+4an'® 4+ bnn¥’

Sor given number of processors

par __ 1

" T 1+4a/NS)Y3Eb/N
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for given load per processor

1
l4+a+hbnt/3

par _
par —

The limiting factors are, therefore, a function of the dimensionality of processor configuration
and not of the grid dimensionality. The dependence on » is somewhat better for three- than for
two-dimensional configurations (but obviously the former are applicable only to three-dimen-
sional flow problems).

The above analysis shows that global communication is the limiting factor for a large number
of processors. The efficiency can only be improved by modifying the global communication
structure. For example, by implementing a binary tree topology (relatively easy for bus architec-
tures), the global communication cost would be proportional to log n. If global communication is
not performed after every iteration, the factor b is reduced, but the overall trend remains the same.

Parallel efficiencies of the present algorithm were evaluated using the model described above
for a grid of 1000 x 1000 CV, large numbers of processors and two computers (see Figure 8). The
60% level is reached on the Meiko transputer system with about 1000 processors and on
Suprenum at about 450 processors (the maximum number of processors for Suprenum is actually
256). It 1s interesting that, for a small number of processors (up to 100) and this large grid, the
Suprenum offers slightly higher efficiency than the Meiko transputer system, which seems
contradictory to the results discussed before. This is due to its faster data transfer rate, see Table I,
which becomes important when messages are large. With increasing number of processors, the
message size reduces and the set-up time becomes dominant, causing the efficiency to deteriorate
much faster than is the case with the Meiko computer.
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Figure 8. Predicted parallcl efficiency for a grid of 1000 x 1000 CV and various numbers of processors, for the Meiko
transputer system and Suprenum
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Table XII. Comparison of computing times and number of iterations for the test
case 2 and a 384 x 512 CV grid on various computers

Computer No. of processors No. of iterations Comp. time (s)
Cray YMP 1 21 315
Meiko 48 22 382
Parsytec 48 22 527

192 28 324

The unfavourable dependence of EE*" on n could be avoided only by changing the computer
architecture. For example, if the host (or any other processor) was provided access to the data in
each processor’s private memory, then the gathering or broadcasting could be performed while
other processors are calculating. The negative effect of the global communication on the efficiency
could also be eliminated if it took place simultaneously with calculation. Between two global
communications there is normally a large number of computing operations, so the arrival of
broadcasted information would be at most one iteration late. For a convergence check, this could
be taken into account by adjusting the convergence criterion; for the pressure correction level at
reference location, this would not matter, because at convergence it is supposed to be negligibly
small everywhere.

Finally, calculations for test case 2 and a grid with 348 x 512 CV were performed on the Meiko
transputer system with 48 processors, on the Parsytec transputer system with 48 and 192
processors and on the Cray YMP (no vectorization). Computing times and numbers of outer
iterations are presented in Table XI1. The estimated total efficiency of the parallel computing was
about 80% with 48 processors and about 50% with 192 processors. The comparison of comput-
ing times is unfair; a vectorized code would run 5-10 times faster on Cray YMP. The main reason
for using Cray YMP was to estimate the numerical efficiency, since it was the only computer
available which could store the whole grid in single processor’s memory.

In the analysis and test calculations presented above, the least efficient communication was
used; the results should, therefore, be seen as a lower-limit case. Future parallel computers (and
some present ones, which were not available to the authors) will offer one of the above mentioned
possibilitics for improving parallel efficiency, so that it is likely to get closer to 100%. The total
efficiency will then depend mostly on numerical efficiency. Multigrid methods appear to retain
their efficiency on the finest grid, at the expense of increased number of iterations on coarse grids,
which indicates that implicit solution methods will run efficiently on massively parallel com-
puters.

CONCLUSIONS

Results of test calculations with the parallelized version of an implicit multigrid finite volume
code and theoretical analysis allow the following conclusions to be drawn:

{1) The efficiency of parallel computing of fluid flows using implicit finite volume algorithms
and domain decomposition technique is influenced by three major parameters:

(a) Increase in the number of inner and outer iterations needed to converge due to the
decoupling of subdomains; this is characterized by the numerical efficiency,

(b) communication time needed to transfer boundary data between processors (local
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communication) and for monitoring of convergence (global communication); this is
characterized by the parallel efficiency;
(c) idle times of processors due to unever load; this is characterized by the load-balancing
efficiency.
The total efficiency is equal to the product of these three parameters, and provides an
important criterion for evaluating parallel algorithms and computers. The parallel effici-
ency alone is not sufficient for this judgement.

{2) The analysis and numerical experiments show that parallel performance becomes less
efficient as the number of processors grows at constant load, due to the global communica-
tion. The critical hardware parameter is the ratio of communication speed to the calcu-
lation speed, which is dominated by the set-up time for initiating communication between
Pprocessors.

(3) The test calculations show that thc numerical efficiency of the multigrid algorithm is not
affected more by the domain decomposition than is the efficiency of the single-grid
algorithm. Both are high when boundary data are exchanged between processors after each
inner iteration. The parallel efficiency, on the other hand, is worse for the multigrid
algorithm due to the use of coarse grids with a large number of processors and more
communication per outer iteration. In spite of that, the total computing times with the
parallel multigrid algorithm are orders of magnitude shorter than with the single-grid
algorithm.

(4) A theoretical model of the parallel efficiency was developed and shown to predict the
measured efficiencies well. It takes into account the number of processors used, the
communication patterns in the algorithm and the hardware characteristics including
computing time per floating point operation, set-up time for communication and the rate of
data transfer between processors.

The results of this study show that implicit solution methods can be adapted for parallel
processors using domain decomposition techniques, provided that the communication is not too
slow compared to the calculation. It is expected that these findings remain valid for three-
dimensional applications, and that the efficiencies will be higher for complex geometries and flow
phenomena, since the number of floating-point operations per control volume and iteration will
be much higher than in the cases studied here, while the amount of communication will remain
more or less the same.
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